GIET POLYTECHNIC, JAGATPUR, CUTTACK

LESSON PLAN

Discipline: ELECTRICAL	Semester: 6 th	Name Of The Teaching Faculty: RUPAK KUMAR SAHOO
Subject: CONTROL SYSTEM &	No. Of Days Per Week Class Allotted: 04 P	Semester From Date: To Date:
COMPONENTS		No. of weeks: 15
Week	Class Day	Theory Topic
1 ^{-t} week		UNIT 1 : FUNDAMENTAL OF CONTROL SYSTEM
	1 st	 1.1: Classification of control system
		1.2: Open loop system
	2 nd	 1.2: Closed loop system & its comparision
	3 rd	• 1.3: Effects of feed back
	3.5	 1.4: Standard test signals (step, ramp)
	4 th	 1.4: Standard test signals(parabolic, impulse functions)
2 ^{-s} week	1 st	1.5: Servomechanism
	1	 1.6: Regulators (Regulating systems)
	2 nd	UNIT 2 : TRANSFER FUNCTIONS
	2	 2.1: Transfer function of a system & impulse response
	3 rd	 2.2: Properties of a transfer function
	4 th	 2.2: Advantages & Disadvantages of transfer function
3 rd week	1 st	 2.3: Poles & Zeroes of transfer function
	2 nd	 2.4: Representation of poles & zero on the s-plane
	3 rd	 2.4: Representation of poles and zero on the s-plane
	4 th	 2.5: Simple problems on transfer function of network
4 th week	1 st	 2.5: Simple problems on transfer function of network
		UNIT 3 : CONTROL SYSTEM COMPONENTS & MATHEMATICAL MODELLING
	2 nd	OF PHYSICAL SYSTEM
		 3.1: Components of control system
	3 rd	 3.2: Potentiometer, syncros
	4 th	 3.2: Diode modulator & demodulator
5 th week	1 st	 3.3: DC motors , ac servomotors
	2 nd	 3.4: Modelling of electrical systems (R,L,C analogous system)
	3 rd	UNIT 4 : BLOCK DIAGRAM & SIGNAL FLOW GRAPHS
		 4.1: Definition of basic elements of a block diagram
	4 th	 4.2: Chemical form of closed loop system
6 th week	1 st	 4.3: Rules for block diagram reduction
	2 nd	 4.4: Proceedure for reduction of block diagram
	3 rd	 4.5: Simple problem for equivalent t
	4 th	 4.5: Simple problem for equivalent transfer function 4.6: Basic definition in sfg & properties
•		 4.7: Mason's gain formula
7 th week	1 st	 4.8: Steps for solving signal flow graph

	2 nd	 4.9: Simple problems in signal flow graph for network
	• 3 rd	UNIT 5 : TIME DOMAIN ANALYSIS OF CONTROL SYSTEMS
	• 5	 5.1: Definition of time stability, steady state response
	4 th	 5.1: Definition of accuracy, transient accuracy, in-sensitivity & robustness
	1 st	 5.2: System time response
8" week	2 nd	 5.3: Analysis of steady state error
	3 rd	 5.4: Types of input & steady state error(step , ramp , parabolic)
	4 th	5.5: Parameters of first order & second order system
9 ¹⁵ week	1 st	 5.6: Derivation of time response specification (delay time , rising time)
	2 nd	 5.6: Derivation of time response specification(peak time , setting time , peak overshoot)
9 WEEK	3 rd	UNIT 6 : FEEDBACK CHARACTERISTICS OF CONTROL SYSTEMS
		 6.1: Effect of parameter variation in open loop system
	4 th	 6.1: Effect of parameter variation in closed loop system
	4	 6.2: Introduction to basic control action & basic modes of feedbac
	1 st	control: proportional, integral & derivative
10" week	2 nd	 6.3: Effect of feedback on overall gain , stability
TO WEEK	2 3 rd	 6.4: Realisation of controllers (P, PI) with OPAMP
	4 th	 6.4: Realisation of controllers (PD, PID) with OPAMP
	1 st	UNIT 7 : STABILITY CONCEPT & ROOT LOCUS METHOD
		 7.1: Effect of location of poles on stability
11 week	2 nd	 7.1: Effect of location of poles on stability
in the con	3 rd	 7.2: RouthHurwitz stability criterion
	4 th	 7.2: RouthHurwitz stability criterion
	1 st	 7.3: Steps for root locus method
	2 nd	 7.4: Root locus method of design
12 ¹⁰ week	3 rd	 7.4: Simple problems
-	4 th	7.4: Simple problems
	-	UNIT 8: FREQUENCY RESPONSE ANALYSIS & BODE PLOT
	1 st	 8.1: Frequency response , relationship between time & frequency response
13' week	2 nd	 8.2: Method of frequency response
	3 rd	 8.3: Polar plots & steps for polar plots
	4 th	 8.4: Bode plots & steps for bode plots
	1 st	 8.5: Stability in frequency domain, gain margin & phase margin
	2 nd	 8.6: Nyquist plots, Nyquist stability criterion
14 Week	3 rd	 8.7: Simple problems as above
	4 th	UNIT 9: STATE VARIABLE ANALYSIS • 9.1: Concept of state , state variable, state model
	1 st	 9.1: Concept of state , state variable, state model
	2 nd	 9.2: Steps model for linear continuous time function(simple)
15" week	3 rd	 9.2: Steps model for linear continuous time function(simple) DEVISION
		time function (simple)